Tap the blue circles to see an explanation.
| $$ \begin{aligned}4(x^2+1)+5(x^2-3x+6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2+4+5x^2-15x+30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9x^2-15x+34\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{4} $ by $ \left( x^2+1\right) $ $$ \color{blue}{4} \cdot \left( x^2+1\right) = 4x^2+4 $$Multiply $ \color{blue}{5} $ by $ \left( x^2-3x+6\right) $ $$ \color{blue}{5} \cdot \left( x^2-3x+6\right) = 5x^2-15x+30 $$ |
| ② | Combine like terms: $$ \color{blue}{4x^2} + \color{red}{4} + \color{blue}{5x^2} -15x+ \color{red}{30} = \color{blue}{9x^2} -15x+ \color{red}{34} $$ |