Tap the blue circles to see an explanation.
| $$ \begin{aligned}4(x-1)+2(x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x-4+2x+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x+2\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{4} $ by $ \left( x-1\right) $ $$ \color{blue}{4} \cdot \left( x-1\right) = 4x-4 $$Multiply $ \color{blue}{2} $ by $ \left( x+3\right) $ $$ \color{blue}{2} \cdot \left( x+3\right) = 2x+6 $$ |
| ② | Combine like terms: $$ \color{blue}{4x} \color{red}{-4} + \color{blue}{2x} + \color{red}{6} = \color{blue}{6x} + \color{red}{2} $$ |