Tap the blue circles to see an explanation.
| $$ \begin{aligned}4(2x+7)(x-8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(8x+28)(x-8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^2-64x+28x-224 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}8x^2-36x-224\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{4} $ by $ \left( 2x+7\right) $ $$ \color{blue}{4} \cdot \left( 2x+7\right) = 8x+28 $$ |
| ② | Multiply each term of $ \left( \color{blue}{8x+28}\right) $ by each term in $ \left( x-8\right) $. $$ \left( \color{blue}{8x+28}\right) \cdot \left( x-8\right) = 8x^2-64x+28x-224 $$ |
| ③ | Combine like terms: $$ 8x^2 \color{blue}{-64x} + \color{blue}{28x} -224 = 8x^2 \color{blue}{-36x} -224 $$ |