Tap the blue circles to see an explanation.
| $$ \begin{aligned}3x^2+2x^3+4x^2-(5x^3+2x^2+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^3+7x^2-(5x^3+2x^2+7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^3+7x^2-5x^3-2x^2-7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-3x^3+5x^2-7\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{3x^2} +2x^3+ \color{blue}{4x^2} = 2x^3+ \color{blue}{7x^2} $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 5x^3+2x^2+7 \right) = -5x^3-2x^2-7 $$ |
| ③ | Combine like terms: $$ \color{blue}{2x^3} + \color{red}{7x^2} \color{blue}{-5x^3} \color{red}{-2x^2} -7 = \color{blue}{-3x^3} + \color{red}{5x^2} -7 $$ |