Tap the blue circles to see an explanation.
| $$ \begin{aligned}3x^2+2x(x-1)+8-x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^2+2x^2-2x+8-x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^2-2x+8-x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^2-2x+8\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2x} $ by $ \left( x-1\right) $ $$ \color{blue}{2x} \cdot \left( x-1\right) = 2x^2-2x $$ |
| ② | Combine like terms: $$ \color{blue}{3x^2} + \color{blue}{2x^2} -2x = \color{blue}{5x^2} -2x $$ |
| ③ | Combine like terms: $$ \color{blue}{5x^2} -2x+8 \color{blue}{-x^2} = \color{blue}{4x^2} -2x+8 $$ |