Tap the blue circles to see an explanation.
| $$ \begin{aligned}3x(x+2)(x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x^2+6x)(x-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^3-3x^2+6x^2-6x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3x^3+3x^2-6x\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3x} $ by $ \left( x+2\right) $ $$ \color{blue}{3x} \cdot \left( x+2\right) = 3x^2+6x $$ |
| ② | Multiply each term of $ \left( \color{blue}{3x^2+6x}\right) $ by each term in $ \left( x-1\right) $. $$ \left( \color{blue}{3x^2+6x}\right) \cdot \left( x-1\right) = 3x^3-3x^2+6x^2-6x $$ |
| ③ | Combine like terms: $$ 3x^3 \color{blue}{-3x^2} + \color{blue}{6x^2} -6x = 3x^3+ \color{blue}{3x^2} -6x $$ |