Tap the blue circles to see an explanation.
| $$ \begin{aligned}3w^2-w-\frac{25}{w}-3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3w^3-w^2-25}{w}-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3w^3-w^2-3w-25}{w}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{25}{w} $ from $ 3w^2-w $ to get $ \dfrac{ \color{purple}{ 3w^3-w^2-25 } }{ w }$. Step 1: Write $ 3w^2-w $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $3$ from $ \dfrac{3w^3-w^2-25}{w} $ to get $ \dfrac{ \color{purple}{ 3w^3-w^2-3w-25 } }{ w }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |