Tap the blue circles to see an explanation.
| $$ \begin{aligned}36 \cdot \frac{x^8}{6}x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{36x^8}{6}x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{36x^{10}}{6}\end{aligned} $$ | |
| ① | Multiply $36$ by $ \dfrac{x^8}{6} $ to get $ \dfrac{ 36x^8 }{ 6 } $. Step 1: Write $ 36 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 36 \cdot \frac{x^8}{6} & \xlongequal{\text{Step 1}} \frac{36}{\color{red}{1}} \cdot \frac{x^8}{6} \xlongequal{\text{Step 2}} \frac{ 36 \cdot x^8 }{ 1 \cdot 6 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 36x^8 }{ 6 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{36x^8}{6} $ by $ x^2 $ to get $ \dfrac{ 36x^{10} }{ 6 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{36x^8}{6} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{36x^8}{6} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 36x^8 \cdot x^2 }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 36x^{10} }{ 6 } \end{aligned} $$ |