Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{3}{4}x^2-\frac{1}{6}x^3+x^2-\frac{1}{4}x^3+7& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3x^2}{4}-\frac{x^3}{6}+x^2-\frac{x^3}{4}+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-2x^3+9x^2}{12}+x^2-\frac{x^3}{4}+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{-2x^3+21x^2}{12}-\frac{x^3}{4}+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{-5x^3+21x^2}{12}+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{-5x^3+21x^2+84}{12}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{3}{4} $ by $ x^2 $ to get $ \dfrac{ 3x^2 }{ 4 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x^2 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x^2 }{ 4 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{1}{6} $ by $ x^3 $ to get $ \dfrac{ x^3 }{ 6 } $. Step 1: Write $ x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{6} \cdot x^3 & \xlongequal{\text{Step 1}} \frac{1}{6} \cdot \frac{x^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^3 }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^3 }{ 6 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{1}{4} $ by $ x^3 $ to get $ \dfrac{ x^3 }{ 4 } $. Step 1: Write $ x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot x^3 & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{x^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^3 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^3 }{ 4 } \end{aligned} $$ |
| ④ | Subtract $ \dfrac{x^3}{6} $ from $ \dfrac{3x^2}{4} $ to get $ \dfrac{ \color{purple}{ -2x^3+9x^2 } }{ 12 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Multiply $ \dfrac{1}{4} $ by $ x^3 $ to get $ \dfrac{ x^3 }{ 4 } $. Step 1: Write $ x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot x^3 & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{x^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^3 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^3 }{ 4 } \end{aligned} $$ |
| ⑥ | Add $ \dfrac{-2x^3+9x^2}{12} $ and $ x^2 $ to get $ \dfrac{ \color{purple}{ -2x^3+21x^2 } }{ 12 }$. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Multiply $ \dfrac{1}{4} $ by $ x^3 $ to get $ \dfrac{ x^3 }{ 4 } $. Step 1: Write $ x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot x^3 & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{x^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^3 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^3 }{ 4 } \end{aligned} $$ |
| ⑧ | Subtract $ \dfrac{x^3}{4} $ from $ \dfrac{-2x^3+21x^2}{12} $ to get $ \dfrac{ \color{purple}{ -5x^3+21x^2 } }{ 12 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑨ | Add $ \dfrac{-5x^3+21x^2}{12} $ and $ 7 $ to get $ \dfrac{ \color{purple}{ -5x^3+21x^2+84 } }{ 12 }$. Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |