Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(z+2)+2(z-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3z+6+2z-8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5z-2\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( z+2\right) $ $$ \color{blue}{3} \cdot \left( z+2\right) = 3z+6 $$Multiply $ \color{blue}{2} $ by $ \left( z-4\right) $ $$ \color{blue}{2} \cdot \left( z-4\right) = 2z-8 $$ |
| ② | Combine like terms: $$ \color{blue}{3z} + \color{red}{6} + \color{blue}{2z} \color{red}{-8} = \color{blue}{5z} \color{red}{-2} $$ |