Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(x+5)+4(x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x+15+4x-12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}7x+3\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( x+5\right) $ $$ \color{blue}{3} \cdot \left( x+5\right) = 3x+15 $$Multiply $ \color{blue}{4} $ by $ \left( x-3\right) $ $$ \color{blue}{4} \cdot \left( x-3\right) = 4x-12 $$ |
| ② | Combine like terms: $$ \color{blue}{3x} + \color{red}{15} + \color{blue}{4x} \color{red}{-12} = \color{blue}{7x} + \color{red}{3} $$ |