Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(x+5)\cdot2+5(x+5)-2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x+15)\cdot2+5x+25-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x+30+5x+25-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}11x+55-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}11x+53\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( x+5\right) $ $$ \color{blue}{3} \cdot \left( x+5\right) = 3x+15 $$Multiply $ \color{blue}{5} $ by $ \left( x+5\right) $ $$ \color{blue}{5} \cdot \left( x+5\right) = 5x+25 $$ |
| ② | $$ \left( \color{blue}{3x+15}\right) \cdot 2 = 6x+30 $$ |
| ③ | Combine like terms: $$ \color{blue}{6x} + \color{red}{30} + \color{blue}{5x} + \color{red}{25} = \color{blue}{11x} + \color{red}{55} $$ |
| ④ | Combine like terms: $$ 11x+ \color{blue}{55} \color{blue}{-2} = 11x+ \color{blue}{53} $$ |