Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(x+3)-8(x-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x+9-(8x-32) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x+9-8x+32 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-5x+41\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( x+3\right) $ $$ \color{blue}{3} \cdot \left( x+3\right) = 3x+9 $$Multiply $ \color{blue}{8} $ by $ \left( x-4\right) $ $$ \color{blue}{8} \cdot \left( x-4\right) = 8x-32 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 8x-32 \right) = -8x+32 $$ |
| ③ | Combine like terms: $$ \color{blue}{3x} + \color{red}{9} \color{blue}{-8x} + \color{red}{32} = \color{blue}{-5x} + \color{red}{41} $$ |