Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(x+2y)+2(2x-3y)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x+6y+4x-6y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}7x\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( x+2y\right) $ $$ \color{blue}{3} \cdot \left( x+2y\right) = 3x+6y $$Multiply $ \color{blue}{2} $ by $ \left( 2x-3y\right) $ $$ \color{blue}{2} \cdot \left( 2x-3y\right) = 4x-6y $$ |
| ② | Combine like terms: $$ \color{blue}{3x} + \, \color{red}{ \cancel{6y}} \,+ \color{blue}{4x} \, \color{red}{ -\cancel{6y}} \, = \color{blue}{7x} $$ |