Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(x+12)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3(x^2+24x+144) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^2+72x+432\end{aligned} $$ | |
| ① | Find $ \left(x+12\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 12 }$. $$ \begin{aligned}\left(x+12\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 12 + \color{red}{12^2} = x^2+24x+144\end{aligned} $$ |
| ② | Multiply $ \color{blue}{3} $ by $ \left( x^2+24x+144\right) $ $$ \color{blue}{3} \cdot \left( x^2+24x+144\right) = 3x^2+72x+432 $$ |