Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(x-3)\cdot2-5(x-3)-3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3x-9)\cdot2-(5x-15)-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x-18-(5x-15)-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6x-18-5x+15-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x-6\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( x-3\right) $ $$ \color{blue}{3} \cdot \left( x-3\right) = 3x-9 $$Multiply $ \color{blue}{5} $ by $ \left( x-3\right) $ $$ \color{blue}{5} \cdot \left( x-3\right) = 5x-15 $$ |
| ② | $$ \left( \color{blue}{3x-9}\right) \cdot 2 = 6x-18 $$ |
| ③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 5x-15 \right) = -5x+15 $$ |
| ④ | Combine like terms: $$ \color{blue}{6x} \color{red}{-18} \color{blue}{-5x} + \color{green}{15} \color{green}{-3} = \color{blue}{x} \color{green}{-6} $$ |