Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(x-2(x+4))& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3(x-(2x+8)) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3(x-2x-8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}3(-x-8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-3x-24\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( x+4\right) $ $$ \color{blue}{2} \cdot \left( x+4\right) = 2x+8 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x+8 \right) = -2x-8 $$ |
| ③ | Combine like terms: $$ \color{blue}{x} \color{blue}{-2x} -8 = \color{blue}{-x} -8 $$ |
| ④ | Multiply $ \color{blue}{3} $ by $ \left( -x-8\right) $ $$ \color{blue}{3} \cdot \left( -x-8\right) = -3x-24 $$ |