Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(b-a)b^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(3b-3a)b^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3b^4-3ab^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-3ab^3+3b^4\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( b-a\right) $ $$ \color{blue}{3} \cdot \left( b-a\right) = 3b-3a $$ |
| ② | $$ \left( \color{blue}{3b-3a}\right) \cdot b^3 = 3b^4-3ab^3 $$ |
| ③ | Combine like terms: $$ -3ab^3+3b^4 = -3ab^3+3b^4 $$ |