Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(7r^{10}-4r^9-5r^{10})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3(2r^{10}-4r^9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6r^{10}-12r^9\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{7r^{10}} -4r^9 \color{blue}{-5r^{10}} = \color{blue}{2r^{10}} -4r^9 $$ |
| ② | Multiply $ \color{blue}{3} $ by $ \left( 2r^{10}-4r^9\right) $ $$ \color{blue}{3} \cdot \left( 2r^{10}-4r^9\right) = 6r^{10}-12r^9 $$ |