Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(6+x)^2+5(6+x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3(6+x)^2+5(x+10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3(36+12x+x^2)+5(x+10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}108+36x+3x^2+5x+50 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}3x^2+41x+158\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{6} +x+ \color{blue}{4} = x+ \color{blue}{10} $$ |
| ② | Find $ \left(6+x\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 6 } $ and $ B = \color{red}{ x }$. $$ \begin{aligned}\left(6+x\right)^2 = \color{blue}{6^2} +2 \cdot 6 \cdot x + \color{red}{x^2} = 36+12x+x^2\end{aligned} $$ |
| ③ | Multiply $ \color{blue}{3} $ by $ \left( 36+12x+x^2\right) $ $$ \color{blue}{3} \cdot \left( 36+12x+x^2\right) = 108+36x+3x^2 $$Multiply $ \color{blue}{5} $ by $ \left( x+10\right) $ $$ \color{blue}{5} \cdot \left( x+10\right) = 5x+50 $$ |
| ④ | Combine like terms: $$ \color{blue}{108} + \color{red}{36x} +3x^2+ \color{red}{5x} + \color{blue}{50} = 3x^2+ \color{red}{41x} + \color{blue}{158} $$ |