Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(5x-3)(2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(15x-9)(2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}30x^2+15x-18x-9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}30x^2-3x-9\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( 5x-3\right) $ $$ \color{blue}{3} \cdot \left( 5x-3\right) = 15x-9 $$ |
| ② | Multiply each term of $ \left( \color{blue}{15x-9}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{15x-9}\right) \cdot \left( 2x+1\right) = 30x^2+15x-18x-9 $$ |
| ③ | Combine like terms: $$ 30x^2+ \color{blue}{15x} \color{blue}{-18x} -9 = 30x^2 \color{blue}{-3x} -9 $$ |