Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(3x-5)-5(x-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9x-15-(5x-20) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9x-15-5x+20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x+5\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( 3x-5\right) $ $$ \color{blue}{3} \cdot \left( 3x-5\right) = 9x-15 $$Multiply $ \color{blue}{5} $ by $ \left( x-4\right) $ $$ \color{blue}{5} \cdot \left( x-4\right) = 5x-20 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 5x-20 \right) = -5x+20 $$ |
| ③ | Combine like terms: $$ \color{blue}{9x} \color{red}{-15} \color{blue}{-5x} + \color{red}{20} = \color{blue}{4x} + \color{red}{5} $$ |