Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(3a+9)(-4a-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(9a+27)(-4a-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-36a^2-54a-108a-162 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-36a^2-162a-162\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( 3a+9\right) $ $$ \color{blue}{3} \cdot \left( 3a+9\right) = 9a+27 $$ |
| ② | Multiply each term of $ \left( \color{blue}{9a+27}\right) $ by each term in $ \left( -4a-6\right) $. $$ \left( \color{blue}{9a+27}\right) \cdot \left( -4a-6\right) = -36a^2-54a-108a-162 $$ |
| ③ | Combine like terms: $$ -36a^2 \color{blue}{-54a} \color{blue}{-108a} -162 = -36a^2 \color{blue}{-162a} -162 $$ |