Tap the blue circles to see an explanation.
| $$ \begin{aligned}3(18z-4w)+2(10z-6w)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}54z-12w+20z-12w \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-24w+74z\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( 18z-4w\right) $ $$ \color{blue}{3} \cdot \left( 18z-4w\right) = 54z-12w $$Multiply $ \color{blue}{2} $ by $ \left( 10z-6w\right) $ $$ \color{blue}{2} \cdot \left( 10z-6w\right) = 20z-12w $$ |
| ② | Combine like terms: $$ \color{blue}{54z} \color{red}{-12w} + \color{blue}{20z} \color{red}{-12w} = \color{red}{-24w} + \color{blue}{74z} $$ |