Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x+3 \cdot \frac{y}{6}xy& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x+\frac{3y}{6}xy \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x+\frac{3xy}{6}y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x+\frac{3xy^2}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{3xy^2+12x}{6}\end{aligned} $$ | |
| ① | Multiply $3$ by $ \dfrac{y}{6} $ to get $ \dfrac{ 3y }{ 6 } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{y}{6} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{y}{6} \xlongequal{\text{Step 2}} \frac{ 3 \cdot y }{ 1 \cdot 6 } \xlongequal{\text{Step 3}} \frac{ 3y }{ 6 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{3y}{6} $ by $ x $ to get $ \dfrac{ 3xy }{ 6 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3y}{6} \cdot x & \xlongequal{\text{Step 1}} \frac{3y}{6} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3y \cdot x }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3xy }{ 6 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{3xy}{6} $ by $ y $ to get $ \dfrac{ 3xy^2 }{ 6 } $. Step 1: Write $ y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3xy}{6} \cdot y & \xlongequal{\text{Step 1}} \frac{3xy}{6} \cdot \frac{y}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3xy \cdot y }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3xy^2 }{ 6 } \end{aligned} $$ |
| ④ | Add $2x$ and $ \dfrac{3xy^2}{6} $ to get $ \dfrac{ \color{purple}{ 3xy^2+12x } }{ 6 }$. Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |