Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x+\frac{3}{x}-4-x-\frac{5}{x}+2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2x^2+3}{x}-4-x-\frac{5}{x}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x^2-4x+3}{x}-x-\frac{5}{x}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^2-4x+3}{x}-\frac{5}{x}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{x^2-4x-2}{x}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{x^2-2x-2}{x}\end{aligned} $$ | |
| ① | Add $2x$ and $ \dfrac{3}{x} $ to get $ \dfrac{ \color{purple}{ 2x^2+3 } }{ x }$. Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $4$ from $ \dfrac{2x^2+3}{x} $ to get $ \dfrac{ \color{purple}{ 2x^2-4x+3 } }{ x }$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $x$ from $ \dfrac{2x^2-4x+3}{x} $ to get $ \dfrac{ \color{purple}{ x^2-4x+3 } }{ x }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Subtract $ \dfrac{5}{x} $ from $ \dfrac{x^2-4x+3}{x} $ to get $ \dfrac{x^2-4x-2}{x} $. To subtract expressions with the same denominators, we subtract the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{x^2-4x+3}{x} - \frac{5}{x} & = \frac{x^2-4x+3}{\color{blue}{x}} - \frac{5}{\color{blue}{x}} =\frac{ x^2-4x+3 - 5 }{ \color{blue}{ x }} = \\[1ex] &= \frac{x^2-4x-2}{x} \end{aligned} $$ |
| ⑤ | Add $ \dfrac{x^2-4x-2}{x} $ and $ 2 $ to get $ \dfrac{ \color{purple}{ x^2-2x-2 } }{ x }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |