Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x^4+5x^3+3x^2+8x+\frac{12}{2}x+3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^4+5x^3+3x^2+8x + \frac{ 12 : \color{orangered}{ 2 } }{ 2 : \color{orangered}{ 2 }} \cdot x + 3 \xlongequal{ } \\[1 em] & \xlongequal{ }2x^4+5x^3+3x^2+8x+\frac{6}{1}x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^4+5x^3+3x^2+8x+6x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x^4+5x^3+3x^2+14x+3\end{aligned} $$ | |
| ① | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |
| ② | Remove 1 from denominator. |
| ③ | Combine like terms: $$ 2x^4+5x^3+3x^2+ \color{blue}{8x} + \color{blue}{6x} +3 = 2x^4+5x^3+3x^2+ \color{blue}{14x} +3 $$ |