Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x^2-12 \cdot \frac{x}{x^2}-3x-18& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2-\frac{12x}{x^2}-3x-18 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x^4-12x}{x^2}-3x-18 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x^4-3x^3-12x}{x^2}-18 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2x^4-3x^3-18x^2-12x}{x^2}\end{aligned} $$ | |
| ① | Multiply $12$ by $ \dfrac{x}{x^2} $ to get $ \dfrac{ 12x }{ x^2 } $. Step 1: Write $ 12 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 12 \cdot \frac{x}{x^2} & \xlongequal{\text{Step 1}} \frac{12}{\color{red}{1}} \cdot \frac{x}{x^2} \xlongequal{\text{Step 2}} \frac{ 12 \cdot x }{ 1 \cdot x^2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 12x }{ x^2 } \end{aligned} $$ |
| ② | Subtract $ \dfrac{12x}{x^2} $ from $ 2x^2 $ to get $ \dfrac{ \color{purple}{ 2x^4-12x } }{ x^2 }$. Step 1: Write $ 2x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $3x$ from $ \dfrac{2x^4-12x}{x^2} $ to get $ \dfrac{ \color{purple}{ 2x^4-3x^3-12x } }{ x^2 }$. Step 1: Write $ 3x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Subtract $18$ from $ \dfrac{2x^4-3x^3-12x}{x^2} $ to get $ \dfrac{ \color{purple}{ 2x^4-3x^3-18x^2-12x } }{ x^2 }$. Step 1: Write $ 18 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |