Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x(x+5)(x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x^2+10x)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^3-6x^2+10x^2-30x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x^3+4x^2-30x\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2x} $ by $ \left( x+5\right) $ $$ \color{blue}{2x} \cdot \left( x+5\right) = 2x^2+10x $$ |
| ② | Multiply each term of $ \left( \color{blue}{2x^2+10x}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{2x^2+10x}\right) \cdot \left( x-3\right) = 2x^3-6x^2+10x^2-30x $$ |
| ③ | Combine like terms: $$ 2x^3 \color{blue}{-6x^2} + \color{blue}{10x^2} -30x = 2x^3+ \color{blue}{4x^2} -30x $$ |