Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x(x-5-(2x^2+3x))& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x(x-5-2x^2-3x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x(-2x^2-2x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-4x^3-4x^2-10x\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x^2+3x \right) = -2x^2-3x $$ |
| ② | Combine like terms: $$ \color{blue}{x} -5-2x^2 \color{blue}{-3x} = -2x^2 \color{blue}{-2x} -5 $$ |
| ③ | Multiply $ \color{blue}{2x} $ by $ \left( -2x^2-2x-5\right) $ $$ \color{blue}{2x} \cdot \left( -2x^2-2x-5\right) = -4x^3-4x^2-10x $$ |