| $$ \begin{aligned}2x \cdot \frac{x-3}{2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2x^2-6x}{2}\end{aligned} $$ | |
| ① | Multiply $2x$ by $ \dfrac{x-3}{2} $ to get $ \dfrac{ 2x^2-6x }{ 2 } $. Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2x \cdot \frac{x-3}{2} & \xlongequal{\text{Step 1}} \frac{2x}{\color{red}{1}} \cdot \frac{x-3}{2} \xlongequal{\text{Step 2}} \frac{ 2x \cdot \left( x-3 \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^2-6x }{ 2 } \end{aligned} $$ |