Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x3y(5x-(7y-6x))& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x3y(5x-7y+6x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x3y(11x-7y) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x(33xy-21y^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}66x^2y-42xy^2\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 7y-6x \right) = -7y+6x $$ |
| ② | Combine like terms: $$ \color{blue}{5x} -7y+ \color{blue}{6x} = \color{blue}{11x} -7y $$ |
| ③ | Multiply $ \color{blue}{3y} $ by $ \left( 11x-7y\right) $ $$ \color{blue}{3y} \cdot \left( 11x-7y\right) = 33xy-21y^2 $$ |
| ④ | Multiply $ \color{blue}{2x} $ by $ \left( 33xy-21y^2\right) $ $$ \color{blue}{2x} \cdot \left( 33xy-21y^2\right) = 66x^2y-42xy^2 $$ |