Tap the blue circles to see an explanation.
| $$ \begin{aligned}2x(3x-1)-2x(3x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6x^2-2x-(6x^2-2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x^2-2x-6x^2+2x \xlongequal{ } \\[1 em] & \xlongequal{ } \cancel{6x^2} -\cancel{2x} -\cancel{6x^2}+ \cancel{2x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}0\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2x} $ by $ \left( 3x-1\right) $ $$ \color{blue}{2x} \cdot \left( 3x-1\right) = 6x^2-2x $$Multiply $ \color{blue}{2x} $ by $ \left( 3x-1\right) $ $$ \color{blue}{2x} \cdot \left( 3x-1\right) = 6x^2-2x $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 6x^2-2x \right) = -6x^2+2x $$ |
| ③ | Combine like terms: $$ \, \color{blue}{ \cancel{6x^2}} \, \, \color{green}{ -\cancel{2x}} \, \, \color{blue}{ -\cancel{6x^2}} \,+ \, \color{green}{ \cancel{2x}} \, = 0 $$ |