Tap the blue circles to see an explanation.
| $$ \begin{aligned}2a^{3/2}-\frac{2}{4}a& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2a^{3/2} - \frac{ 2 : \color{orangered}{ 2 } }{ 4 : \color{orangered}{ 2 }} \cdot a \xlongequal{ } \\[1 em] & \xlongequal{ }2a^{3/2}-\frac{1}{2}a \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2a^{3/2}-\frac{a}{2}\end{aligned} $$ | |
| ① | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |
| ② | Multiply $ \dfrac{1}{2} $ by $ a $ to get $ \dfrac{ a }{ 2 } $. Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot a & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot a }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ a }{ 2 } \end{aligned} $$ |