Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{299}{156}(5x^2+y)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{299}{156}(25x^4+10x^2y+y^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{ 299 : \color{orangered}{ 13 } }{ 156 : \color{orangered}{ 13 }} \cdot \left(25x^4+10x^2y+y^2\right) \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{23}{12}(25x^4+10x^2y+y^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{575x^4+230x^2y+23y^2}{12}\end{aligned} $$ | |
| ① | Find $ \left(5x^2+y\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 5x^2 } $ and $ B = \color{red}{ y }$. $$ \begin{aligned}\left(5x^2+y\right)^2 = \color{blue}{\left( 5x^2 \right)^2} +2 \cdot 5x^2 \cdot y + \color{red}{y^2} = 25x^4+10x^2y+y^2\end{aligned} $$ |
| ② | Divide both the top and bottom numbers by $ \color{orangered}{ 13 } $. |
| ③ | Multiply $ \dfrac{23}{12} $ by $ 25x^4+10x^2y+y^2 $ to get $ \dfrac{ 575x^4+230x^2y+23y^2 }{ 12 } $. Step 1: Write $ 25x^4+10x^2y+y^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{23}{12} \cdot 25x^4+10x^2y+y^2 & \xlongequal{\text{Step 1}} \frac{23}{12} \cdot \frac{25x^4+10x^2y+y^2}{\color{red}{1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 23 \cdot \left( 25x^4+10x^2y+y^2 \right) }{ 12 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 575x^4+230x^2y+23y^2 }{ 12 } \end{aligned} $$ |