Tap the blue circles to see an explanation.
| $$ \begin{aligned}27 \cdot \frac{x^3}{30}x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{27x^3}{30}x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{27x^5}{30}\end{aligned} $$ | |
| ① | Multiply $27$ by $ \dfrac{x^3}{30} $ to get $ \dfrac{ 27x^3 }{ 30 } $. Step 1: Write $ 27 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 27 \cdot \frac{x^3}{30} & \xlongequal{\text{Step 1}} \frac{27}{\color{red}{1}} \cdot \frac{x^3}{30} \xlongequal{\text{Step 2}} \frac{ 27 \cdot x^3 }{ 1 \cdot 30 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 27x^3 }{ 30 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{27x^3}{30} $ by $ x^2 $ to get $ \dfrac{ 27x^5 }{ 30 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{27x^3}{30} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{27x^3}{30} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 27x^3 \cdot x^2 }{ 30 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 27x^5 }{ 30 } \end{aligned} $$ |