Tap the blue circles to see an explanation.
| $$ \begin{aligned}20 \cdot \frac{y+x}{y+v}y-\frac{v}{5(4y+v)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{20x+20y}{v+y}y-\frac{v}{20y+5v} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{20xy+20y^2}{v+y}-\frac{v}{20y+5v} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{100vxy+100vy^2+400xy^2+400y^3-v^2-vy}{5v^2+25vy+20y^2}\end{aligned} $$ | |
| ① | Multiply $20$ by $ \dfrac{y+x}{y+v} $ to get $ \dfrac{20x+20y}{v+y} $. Step 1: Write $ 20 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 20 \cdot \frac{y+x}{y+v} & \xlongequal{\text{Step 1}} \frac{20}{\color{red}{1}} \cdot \frac{y+x}{y+v} \xlongequal{\text{Step 2}} \frac{ 20 \cdot \left( y+x \right) }{ 1 \cdot \left( y+v \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 20y+20x }{ y+v } = \frac{20x+20y}{v+y} \end{aligned} $$ |
| ② | Multiply $ \color{blue}{5} $ by $ \left( 4y+v\right) $ $$ \color{blue}{5} \cdot \left( 4y+v\right) = 20y+5v $$ |
| ③ | Multiply $ \dfrac{20x+20y}{v+y} $ by $ y $ to get $ \dfrac{ 20xy+20y^2 }{ v+y } $. Step 1: Write $ y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{20x+20y}{v+y} \cdot y & \xlongequal{\text{Step 1}} \frac{20x+20y}{v+y} \cdot \frac{y}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 20x+20y \right) \cdot y }{ \left( v+y \right) \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 20xy+20y^2 }{ v+y } \end{aligned} $$ |
| ④ | Multiply $ \color{blue}{5} $ by $ \left( 4y+v\right) $ $$ \color{blue}{5} \cdot \left( 4y+v\right) = 20y+5v $$ |
| ⑤ | Subtract $ \dfrac{v}{20y+5v} $ from $ \dfrac{20xy+20y^2}{v+y} $ to get $ \dfrac{ \color{purple}{ 100vxy+100vy^2+400xy^2+400y^3-v^2-vy } }{ 5v^2+25vy+20y^2 }$. To subtract raitonal expressions, both fractions must have the same denominator. |