Tap the blue circles to see an explanation.
| $$ \begin{aligned}2y\cdot5+4y\cdot5-3y\cdot3-5y\cdot3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}10y+20y-9y-15y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}6y\end{aligned} $$ | |
| ① | $$ 2 y \cdot 5 = 10 y $$ |
| ② | $$ 4 y \cdot 5 = 20 y $$ |
| ③ | $$ 3 y \cdot 3 = 9 y $$ |
| ④ | $$ 5 y \cdot 3 = 15 y $$ |
| ⑤ | Combine like terms: $$ \color{blue}{10y} + \color{red}{20y} \color{green}{-9y} \color{green}{-15y} = \color{green}{6y} $$ |