Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2}{3}x+y-\frac{3}{4}y-\frac{1}{3}y& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x}{3}+y-\frac{3y}{4}-\frac{y}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{2x+3y}{3}-\frac{3y}{4}-\frac{y}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{8x+3y}{12}-\frac{y}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{8x-y}{12}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{2}{3} $ by $ x $ to get $ \dfrac{ 2x }{ 3 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot x }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 2x }{ 3 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{3}{4} $ by $ y $ to get $ \dfrac{ 3y }{ 4 } $. Step 1: Write $ y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot y & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{y}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot y }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3y }{ 4 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{1}{3} $ by $ y $ to get $ \dfrac{ y }{ 3 } $. Step 1: Write $ y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot y & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{y}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot y }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ y }{ 3 } \end{aligned} $$ |
| ④ | Add $ \dfrac{2x}{3} $ and $ y $ to get $ \dfrac{ \color{purple}{ 2x+3y } }{ 3 }$. Step 1: Write $ y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Multiply $ \dfrac{3}{4} $ by $ y $ to get $ \dfrac{ 3y }{ 4 } $. Step 1: Write $ y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot y & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{y}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot y }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3y }{ 4 } \end{aligned} $$ |
| ⑥ | Multiply $ \dfrac{1}{3} $ by $ y $ to get $ \dfrac{ y }{ 3 } $. Step 1: Write $ y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot y & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{y}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot y }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ y }{ 3 } \end{aligned} $$ |
| ⑦ | Subtract $ \dfrac{3y}{4} $ from $ \dfrac{2x+3y}{3} $ to get $ \dfrac{ \color{purple}{ 8x+3y } }{ 12 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑧ | Multiply $ \dfrac{1}{3} $ by $ y $ to get $ \dfrac{ y }{ 3 } $. Step 1: Write $ y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot y & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{y}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot y }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ y }{ 3 } \end{aligned} $$ |
| ⑨ | Subtract $ \dfrac{y}{3} $ from $ \dfrac{8x+3y}{12} $ to get $ \dfrac{ \color{purple}{ 8x-y } }{ 12 }$. To subtract raitonal expressions, both fractions must have the same denominator. |