Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(x+4)+5(2x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x+8+10x+20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12x+28\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( x+4\right) $ $$ \color{blue}{2} \cdot \left( x+4\right) = 2x+8 $$Multiply $ \color{blue}{5} $ by $ \left( 2x+4\right) $ $$ \color{blue}{5} \cdot \left( 2x+4\right) = 10x+20 $$ |
| ② | Combine like terms: $$ \color{blue}{2x} + \color{red}{8} + \color{blue}{10x} + \color{red}{20} = \color{blue}{12x} + \color{red}{28} $$ |