Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(x-3)-(5x+7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x-6-(5x+7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x-6-5x-7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-3x-13\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( x-3\right) $ $$ \color{blue}{2} \cdot \left( x-3\right) = 2x-6 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 5x+7 \right) = -5x-7 $$ |
| ③ | Combine like terms: $$ \color{blue}{2x} \color{red}{-6} \color{blue}{-5x} \color{red}{-7} = \color{blue}{-3x} \color{red}{-13} $$ |