Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(x-3)(x-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x-6)(x-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^2-12x-6x+36 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x^2-18x+36\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( x-3\right) $ $$ \color{blue}{2} \cdot \left( x-3\right) = 2x-6 $$ |
| ② | Multiply each term of $ \left( \color{blue}{2x-6}\right) $ by each term in $ \left( x-6\right) $. $$ \left( \color{blue}{2x-6}\right) \cdot \left( x-6\right) = 2x^2-12x-6x+36 $$ |
| ③ | Combine like terms: $$ 2x^2 \color{blue}{-12x} \color{blue}{-6x} +36 = 2x^2 \color{blue}{-18x} +36 $$ |