Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(x-2)\cdot2+3(x-2)-4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x-4)\cdot2+3x-6-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x-8+3x-6-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}7x-14-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}7x-18\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( x-2\right) $ $$ \color{blue}{2} \cdot \left( x-2\right) = 2x-4 $$Multiply $ \color{blue}{3} $ by $ \left( x-2\right) $ $$ \color{blue}{3} \cdot \left( x-2\right) = 3x-6 $$ |
| ② | $$ \left( \color{blue}{2x-4}\right) \cdot 2 = 4x-8 $$ |
| ③ | Combine like terms: $$ \color{blue}{4x} \color{red}{-8} + \color{blue}{3x} \color{red}{-6} = \color{blue}{7x} \color{red}{-14} $$ |
| ④ | Combine like terms: $$ 7x \color{blue}{-14} \color{blue}{-4} = 7x \color{blue}{-18} $$ |