Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(w+1)+3(2w+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2w+2+6w+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8w+5\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( w+1\right) $ $$ \color{blue}{2} \cdot \left( w+1\right) = 2w+2 $$Multiply $ \color{blue}{3} $ by $ \left( 2w+1\right) $ $$ \color{blue}{3} \cdot \left( 2w+1\right) = 6w+3 $$ |
| ② | Combine like terms: $$ \color{blue}{2w} + \color{red}{2} + \color{blue}{6w} + \color{red}{3} = \color{blue}{8w} + \color{red}{5} $$ |