Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(p\cdot2+2p\cdot2)+5(p\cdot3-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2(2p+4p)+5(p\cdot3-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2\cdot6p+5(p\cdot3-4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}12p+15p-20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}27p-20\end{aligned} $$ | |
| ① | $$ 2 p \cdot 2 = 4 p $$ |
| ② | Combine like terms: $$ \color{blue}{2p} + \color{blue}{4p} = \color{blue}{6p} $$ |
| ③ | Multiply $ \color{blue}{5} $ by $ \left( 3p-4\right) $ $$ \color{blue}{5} \cdot \left( 3p-4\right) = 15p-20 $$ |
| ④ | Combine like terms: $$ \color{blue}{12p} + \color{blue}{15p} -20 = \color{blue}{27p} -20 $$ |