Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(n^2+2n^2-5n^3)+8n^3+19& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2(-5n^3+3n^2)+8n^3+19 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-10n^3+6n^2+8n^3+19 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-2n^3+6n^2+19\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{n^2} + \color{blue}{2n^2} -5n^3 = -5n^3+ \color{blue}{3n^2} $$ |
| ② | Multiply $ \color{blue}{2} $ by $ \left( -5n^3+3n^2\right) $ $$ \color{blue}{2} \cdot \left( -5n^3+3n^2\right) = -10n^3+6n^2 $$ |
| ③ | Combine like terms: $$ \color{blue}{-10n^3} +6n^2+ \color{blue}{8n^3} +19 = \color{blue}{-2n^3} +6n^2+19 $$ |