Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(b-3x)+3(2x+b)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2b-6x+6x+3b \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5b\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( b-3x\right) $ $$ \color{blue}{2} \cdot \left( b-3x\right) = 2b-6x $$Multiply $ \color{blue}{3} $ by $ \left( 2x+b\right) $ $$ \color{blue}{3} \cdot \left( 2x+b\right) = 6x+3b $$ |
| ② | Combine like terms: $$ \color{blue}{2b} \, \color{red}{ -\cancel{6x}} \,+ \, \color{red}{ \cancel{6x}} \,+ \color{blue}{3b} = \color{blue}{5b} $$ |