Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(a-\frac{a+b+c}{3})^2+2(a-\frac{a+b+c}{3})^2+2(a-\frac{a+b+c}{3})^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}((a-\frac{a+b+c}{3})^2+(a-\frac{a+b+c}{3})^2)\cdot2+2(a-\frac{a+b+c}{3})^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}((a-\frac{a+b+c}{3})^2+(a-\frac{a+b+c}{3})^2+(a-\frac{a+b+c}{3})^2)\cdot2\end{aligned} $$ | |
| ① | Use the distributive property. |
| ② | Use the distributive property. |