Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(5x-2)(3x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(10x-4)(3x+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}30x^2+40x-12x-16 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}30x^2+28x-16\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( 5x-2\right) $ $$ \color{blue}{2} \cdot \left( 5x-2\right) = 10x-4 $$ |
| ② | Multiply each term of $ \left( \color{blue}{10x-4}\right) $ by each term in $ \left( 3x+4\right) $. $$ \left( \color{blue}{10x-4}\right) \cdot \left( 3x+4\right) = 30x^2+40x-12x-16 $$ |
| ③ | Combine like terms: $$ 30x^2+ \color{blue}{40x} \color{blue}{-12x} -16 = 30x^2+ \color{blue}{28x} -16 $$ |