Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(4x^4-x^3)-(2x^3-x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x^4-2x^3-(2x^3-x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^4-2x^3-2x^3+x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}8x^4-4x^3+x\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( 4x^4-x^3\right) $ $$ \color{blue}{2} \cdot \left( 4x^4-x^3\right) = 8x^4-2x^3 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x^3-x \right) = -2x^3+x $$ |
| ③ | Combine like terms: $$ 8x^4 \color{blue}{-2x^3} \color{blue}{-2x^3} +x = 8x^4 \color{blue}{-4x^3} +x $$ |